FestivalNauki.ru
En Ru
cентябрь-ноябрь 2020
176 городов
September – November 2020
312 cities
09-11 октября 2020
МГУ | Экспоцентр | 90+ площадок
14–16 октября 2016
Центральная региональная площадка
28–30 октября 2016
ИРНИТУ, Сибэскпоцентр
14–15 октября 2016
Центральная региональная площадка
23 сентября - 8 октября 2017
«ДонЭкспоцентр», ДГТУ
ноябрь-декабрь 2018
МВДЦ «Сибирь»,
Вузы и научные площадки города
6-8 октября 2017
Самарский университет
27-29 октября
Кампус ДВФУ, ВГУЭС
30 сентября - 1 октября
Ледовый каток «Родные города»
21-22 сентября 2018 года
ВКК "Белэкспоцентр"
9-10 ноября 2018 года
Мурманский областной Дворец Культуры
21-22 сентября 2019 года
22-23 октября 2019 года
29-30 ноября 2019 года
7-8 сентября 2019 года
27-29 сентября 2019 года
4-5 октября 2019 года
10-12 октября 2019 года

Красноярские ученые преобразуют древесные опилки в ценные органические соединения

Ученые ФИЦ «Красноярский научный центр СО РАН» в сотрудничестве с российскими и французскими коллегами усовершенствовали технологию получения жидких углеводородных продуктов из отходов древесной биомассы. Новизна подхода заключается в сочетании предварительной механической активации смеси древесных опилок и цеолитных катализаторов и термической конверсии активированной смеси в сверхкритическом этаноле. Исследователям удалось подобрать такой режим переработки смеси осины и катализатора, при котором выход биомасла достигает 89 %. Получаемые соединения могут быть использованы для производства топливных добавок и полимеров различного назначения. Результаты исследований опубликованы в журнале Journal of Analytical and Applied Pyrolysis.

Глубокая переработка древесных отходов — одно из направлений развития «зеленой» химии. Основная сложность в переработке древесины связана с необходимостью расщепления таких сложных соединений, как целлюлоза и лигнин. Традиционная технология скоростного пиролиза растительной биомассы при температурах 500—700 °С позволяет получать жидкие органические вещества. Однако они малопригодны для дальнейшего использования.

Коллектив ученых из России и Франции совместил несколько существующих подходов к переработке древесины, что позволило увеличить конверсию биомассы в востребованные углеводородные соединения. Исследователи подобрали такой режим воздействия на смесь отходов осины и катализатора, при котором выход жидких продуктов достигал 89 % от массы исходного сырья. Технология была отработана на осине, так как этот вид деревьев по занимаемой площади в России находится на втором месте среди всех лиственных пород, уступая только березе. При этом осина считается малоценной породой.

Чтобы ускорить преобразование биомассы, ученые предложили использовать твердые кислотные цеолитные катализаторы. (Цеолиты — это минералы, в состав которых входят кремний и алюминий). В работе использовали цеолиты с различным соотношением кремния и алюминия, синтезированные в Институте химии нефти СО РАН (Томский научный центр СО РАН). По словам заведующего лабораторией Института химии и химической технологии ФИЦ КНЦ СО РАН доктора химических наук Бориса Николаевича Кузнецова, достоинство твердых кислотных катализаторов в том, что они могут быть легко выделены из реакционной среды, восстановлены и вновь использованы для ускорения реакции.

Смесь древесины и катализатора подвергалась механохимической активации. В ходе такой обработки уменьшается кристалличность древесины, разрушается ее подструктура и формируются небольшие образования из частиц древесины и катализатора. Гомогенное распределение катализатора в реакционной смеси необходимо для быстрого протекания реакции.

Снизить температуру реакции и повысить ее эффективность стало возможным за счет использования органического растворителя (этанола) в сверхкритическом состоянии. В таком состоянии он ведет себя одновременно как жидкость и как газ. Подобно газам — сжимается, имеет низкую вязкость и высокую проникающую способность. Подобно жидкостям — является хорошим растворителем органических и неорганических веществ. 

К активированной смеси катализатора и древесины добавляли этанол и помещали в герметичную камеру, нагретую до температуры 300 °С. В этих условиях растворитель находится в сверхкритическом состоянии. В реакторе происходило разложение древесины на жидкие, газообразные и твердые продукты. Ученые исследовали несколько режимов термической конверсии активированных смесей древесины осины и цеолитов при разном давлении. В результате были подобраны условия (температура, давление, состав катализатора), которые обеспечивают образование максимального количества жидких продуктов (биомасел). Полученные субстанции после серии преобразований могут стать компонентами биотоплив и сырьем для производства полимерных материалов.

Исследование выполнено при поддержке Российского научного фонда в рамках реализации проекта «Разработка новых методов получения ценных химических продуктов путем каталитической деполимеризации органосольвентных древесных лигнинов».

 

Источник http://rscf.ru

Добавьте свой комментарий

Plain text

  • Переносы строк и абзацы формируются автоматически
  • Разрешённые HTML-теги: <p> <br>
LiveJournal
Регистрация

Новости в фейсбук

Случайные статьи

Физики впервые охладили молекулы до температуры 220 нанокельвин

Hyungmok Son, et al. / Nature, 2020

 

Вода будет дороже нефти

По заявлению ООН, сегодня примерно 1,1 миллиарда человек на планете не имеют доступа к чистой питьевой воде, а к  пятидесятых года    XXI столетия от нехватки воды будут сохнуть от двух до шести миллиардов человек в 48 государствах.

Они игнорируют реальность

Чёрные дыры – это то, что случается, когда Вселенная делит на ноль. Они возникают, когда реальность выдаёт критическую ошибку: слишком много вещества в одном месте силой собственной гравитации портит и само вещество, и место, в котором оно находится.

Взгляд из Кремниевой долины на будущее здравоохранения

Прогнозировать будущее здравоохранения – непростое занятие. В любой момент может произойти крупный прорыв, к примеру, в лечении рака, и это перевёрнет все имеющиеся прогнозы.

Насекомые прошли тест Тьюрингом

Ученые и выпускники МГУ имени М.В.Ломоносова подтвердили модель Алана Тьюринга, которая описывает такие сложные биологические рисунки, как пятна на шкуре леопарда или узоры на коже тропических рыб.