FestivalNauki.ru
En Ru
cентябрь-ноябрь
176 городов
September – October
176 cities
12-14 октября 2018
МГУ | Экспоцентр | 90+ площадок
14–16 октября 2016
Центральная региональная площадка
28–30 октября 2016
ИРНИТУ, Сибэскпоцентр
14–15 октября 2016
Центральная региональная площадка
23 сентября - 8 октября 2017
«ДонЭкспоцентр», ДГТУ
ноябрь-декабрь 2018
МВДЦ «Сибирь»,
Вузы и научные площадки города
6-8 октября 2017
Самарский университет
27-29 октября
Кампус ДВФУ, ВГУЭС
30 сентября - 1 октября
Ледовый каток «Родные города»
21-22 сентября 2018 года
ВКК "Белэкспоцентр"
9-10 ноября 2018 года
Мурманский областной Дворец Культуры

Учёные «ощупали» материал для памяти будущего

Физики из МФТИ детально описали процесс переключения электрической поляризации оксида гафния, на основе которого многие исследователи предлагают делать запоминающие ячейки для компьютерных устройств нового поколения. На страницах журнала ACS Applied Materials and Interfaces учёные представилиданные о поведении этого перспективного материала на микроскопическом уровне (исследование поддержано РНФ - прим. ред. сайта rscf.ru).

Вещество со структурной формулой Hf0.5Zr0.5O2, которому посвящена статья специалистов МФТИ совместно с сотрудниками университета Небраски, — сегнетоэлектрик. Это значит, что в электрическом поле часть электронов смещается в сторону, создавая заряженный участок, — и даже если поле исчезнет, этот заряд останется на месте. Сегнетоэлектрики остаются поляризованными так же, как магниты (ферромагнетики) продолжают быть намагниченными: это очень ценное свойство, позволяющее, например, создавать микроскопические ячейки для компьютерной памяти.

Оксид гафния интересен также тем, что он, в отличие от многих «модных» материалов вроде графена или углеродных нанотрубок, уже применяется в микроэлектронной промышленности, например, в процессорах Intel. Свои сегнетооэлектрические свойства оксид гафния проявляет только в очень тонких (от 5 до 20 нанометров) плёнках, получить которые можно, например, методом атомно-слоевого осаждения.

«Этот метод, применявшийся и в нашем исследовании, — рассказывает Анастасия Чуприк, старший научный сотрудник лаборатории нейровычислительных систем МФТИ, — позволяет получать конформные, то есть однородные по толщине, плёнки. Он очень интересен с точки зрения микроэлектроники, так как помимо производства уже выпускающихся устройств может быть использован в перспективных задачах вроде трёхмерной микроэлектроники».

Технологичность в сочетании с сегнетоэлектрическими свойствами были бесспорными плюсами, а вот минусом являлось отсутствие внятного представления о том, как именно переполяризуется материал, что же именно при этом с ним происходит. Изучить микроскопическую структуру оксида гафния непосредственно внутри плоского конденсатора (по сути — будущей ячейки памяти) удалось при помощи разновидности атомно-силового микроскопа — прибора, который не осматривал, а скорее «ощупывал» образец.

Анастасия Чуприк добавляет: «Передвигая вдоль поверхности материала особо острую иглу и подавая электрическое напряжение на обкладки конденсатора, мы получили данные как о рельефе поверхности, в этой части метод напоминал атомно-силовую микроскопию, так и о распределении  поляризации в материале».

Полученные в ходе экспериментов данные впервые позволили показать существование у оксида гафния доменов, то есть микроскопических участков сегнетоэлектрика с определённой поляризацией. Игла микроскопа, попадая на такие участки, по-разному отклонялась из-за изменений электрического поля, и это позволяло выявить границы доменов с точностью до нескольких нанометров.

Кроме того, учёные подтвердили перестройку кристаллической решётки оксида гафния в результате воздействия электрического поля. При перезарядке конденсаторов элементарные ячейки решётки из скошенных прямоугольных призм (так называемая моноклинная сингония) становятся прямоугольными параллелепипедами (это ромбическая сингония), а именно такие ячейки позволяют этому материалу становиться сегнетоэлектриком. Наличие таких изменений предполагалось рядом исследователей ранее, но для подтверждения этой гипотезы физикам недоставало информации.

«Несмотря на то, что оксид гафния уже используется в микроэлектронике и его достаточно легко применить для производства энергонезависимой памяти, природа его сегнетоэлектрических свойств остаётся неясной. Наша работа стала шагом вперёд на пути к осознанному проектированию будущих устройств: зная свойства материала и чем они обусловлены, инженеры смогут оптимизировать ячейки памяти, делая их более компактными, технологичными и надёжными», — говорит Анастасия Чуприк.

Источник http://rscf.ru

Добавьте свой комментарий

Plain text

  • Переносы строк и абзацы формируются автоматически
  • Разрешённые HTML-теги: <p> <br>
LiveJournal
Регистрация

Новости в фейсбук

Случайные статьи

Экзопланеты: Проксима Центавра b

Прогноз погоды на сегодня: на экзопланете Проксима Центавра b наблюдается звездный в

Созданы новые катализаторы для нужд солнечной энергетики

Ученые МГУ выяснили, как можно бороться с устойчивостью грибов к антигрибковым препаратам

ДНК – экстремальный полет

Генетический материал ДНК может пережить полет через космос и повторный вход в земную атмосферу — и все еще сможет передать генетическую информацию.

Гемоглобинов труд

Одна из наиболее трудоемких и долгих научных работ XX века - это, как ни странно, изучение всем хорошо известного гемоглобина. Хорошо известный, но насколько сложный комплекс...