FestivalNauki.ru
En Ru
cентябрь-ноябрь 2020
176 городов
September – November 2020
312 cities
09-11 октября 2020
МГУ | Экспоцентр | 90+ площадок
14–16 октября 2016
Центральная региональная площадка
28–30 октября 2016
ИРНИТУ, Сибэскпоцентр
14–15 октября 2016
Центральная региональная площадка
23 сентября - 8 октября 2017
«ДонЭкспоцентр», ДГТУ
ноябрь-декабрь 2018
МВДЦ «Сибирь»,
Вузы и научные площадки города
6-8 октября 2017
Самарский университет
27-29 октября
Кампус ДВФУ, ВГУЭС
30 сентября - 1 октября
Ледовый каток «Родные города»
21-22 сентября 2018 года
ВКК "Белэкспоцентр"
9-10 ноября 2018 года
Мурманский областной Дворец Культуры
21-22 сентября 2019 года
22-23 октября 2019 года
29-30 ноября 2019 года
7-8 сентября 2019 года
27-29 сентября 2019 года
4-5 октября 2019 года
10-12 октября 2019 года

Механики МГУ узнали, как поведет себя вакуумное масло в космосе

Сотрудники Научно-исследовательского института механики МГУ имени М.В.Ломоносова совместно с коллегой из Центра новых космических технологий МАИ описали поведение свободной жидкой пленки в открытом космосе. Результаты исследования опубликованы в журнале Physics of Fluids.

Устойчивость пленки жидкости в обычных условиях зависит в основном от того, как она взаимодействует с окружающим воздухом. Наиболее существенный эффект, так называемая неустойчивость Кельвина-Гельмгольца, возникает из-за трения жидкости о воздух — разность скоростей двух сред приводит к тому, что на поверхности жидкости развивается рябь, возникают волны, происходит срыв капель и т.д. Наиболее известный пример проявления такой неустойчивости — это ветровые волны на поверхности водоёмов. Авторы нового исследования теоретически изучили, как будет вести себя свободная пленка жидкости в вакууме, когда нет взаимодействия с окружающей средой. Исследование проведено на примере так называемого вакуумного масла — жидкости, у которой вязкость, теплопроводность и поверхностное натяжение существенно зависят от температуры (такие жидкости используются, например, в паромасляных насосах).

На практике исследование поведения жидкостей в условиях открытого космоса необходимо для развития новых технологий охлаждения космических аппаратов. В перспективе на космических аппаратах длительного действия смогут применять так называемые капельные радиаторы-охладители. В таких устройствах жидкость системы охлаждения пропускается через специальные форсунки и превращается в пелену жидких капель, движущуюся в открытом космосе. За счет большой поверхности мелких капель, с которой тепло «сбрасывается» за счет излучения, удается достичь высокой эффективности охлаждения жидкости. В то же время возникает серьезная проблема — как эти капли собрать, превратить снова в жидкость, а эту жидкость возвратить на борт космического аппарата. Возникла идея собирать остывшие капли на специально организованное течение жидкой пленки. Проблеме устойчивости течения такой пленки в открытом космосе и посвящена настоящая работа.

«Обычно жидкие струи и пленки очень быстро разбиваются на капли из-за неустойчивости Кельвина-Гельмгольца, связанной с трением о воздух. В космосе эта неустойчивость исчезает, поэтому необходимо исследовать другие возможные механизмы неустойчивости и причины фрагментации жидкости. Мы выяснили, какие еще неустойчивости могут проявиться в жидкой пленке в условиях, когда нет окружающего воздуха, но течение существенно неизотермическое из-за излучения тепла с поверхности пленки», — рассказал профессор Александр Осипцов, один из авторов работы, заведующий лабораторий механики многофазных сред НИИ механики МГУ.

С помощью классических подходов теории гидродинамической устойчивости исследователи описали математически поведение пленки вакуумного масла в открытом космосе. Оказалось, что в отсутствие главного механизма неустойчивости (Кельвина-Гельмгольца) начинают проявляться неустойчивости, связанные с возникающими в пленке градиентами вязкости и поверхностного натяжения. С поверхности пленки излучается тепло, из-за этого возникает неоднородность температуры как вдоль поверхности пленки, так и внутри неё. Эта неоднородность, в свою очередь, приводит к неоднородности вязкости и поверхностного натяжения, что и является причиной появления новых механизмов неустойчивости.

Исследователи математически описали возникновение неустойчивостей в потоке жидкости, изучили, каким образом коротковолновые и длинноволновые возмущения развиваются со временем, определили наиболее «опасные» типы возмущений. В дальнейшей работе учёные планируют продолжить развитие теоретической модели и описать более сложные процессы, которые могут возникать в системе.

«Мы пока исследовали самый начальный этап — малые возмущения — нашли условия, при которых они растут или не растут, определили критерии неустойчивости. В дальнейшем нужно решать более сложные задачи: как развиваются возмущения на нелинейной стадии, за какое время в пленке возникают неоднородности толщины и «дырки», как быстро пленка может распадаться на капли, а главное — необходимо научиться управлять процессом и стабилизировать устойчивый режим течения», — добавил Александр Осипцов.

 

 

Фото: Схематичное изображение потока. Источник: А. Осипцов

Добавьте свой комментарий

Plain text

  • Переносы строк и абзацы формируются автоматически
  • Разрешённые HTML-теги: <p> <br>
LiveJournal
Регистрация

Другие статьи в этой рубрике

Графен в медицине

Ксения Рыкова для ПостНауки

Астрономы поймали длинный гамма-всплеск от взрыва далекой сверхновой

Астрономы смогли достоверно обнаружить новую пару сверхновая—гамма-всплеск в далекой галактике. Подобные открытия позволяют понять связь между этими катаклизмами и более детально разобраться в механизмах генерации гамма-всплесков.

Взрыв сверхновой разложили на этапы

Сверхновые звёзды — основной источник элементов жизни во Вселенной. Существование человечества и всего живого стало возможно благодаря тем химическим элементам, которые были получены в результате взрыва сверхновых звёзд.

Новости в фейсбук

Случайные статьи

Физики впервые охладили молекулы до температуры 220 нанокельвин

Hyungmok Son, et al. / Nature, 2020

 

Вода будет дороже нефти

По заявлению ООН, сегодня примерно 1,1 миллиарда человек на планете не имеют доступа к чистой питьевой воде, а к  пятидесятых года    XXI столетия от нехватки воды будут сохнуть от двух до шести миллиардов человек в 48 государствах.

Они игнорируют реальность

Чёрные дыры – это то, что случается, когда Вселенная делит на ноль. Они возникают, когда реальность выдаёт критическую ошибку: слишком много вещества в одном месте силой собственной гравитации портит и само вещество, и место, в котором оно находится.

Взгляд из Кремниевой долины на будущее здравоохранения

Прогнозировать будущее здравоохранения – непростое занятие. В любой момент может произойти крупный прорыв, к примеру, в лечении рака, и это перевёрнет все имеющиеся прогнозы.

Насекомые прошли тест Тьюрингом

Ученые и выпускники МГУ имени М.В.Ломоносова подтвердили модель Алана Тьюринга, которая описывает такие сложные биологические рисунки, как пятна на шкуре леопарда или узоры на коже тропических рыб.