FestivalNauki.ru
En Ru
cентябрь-ноябрь 2019
176 городов
September – November 2019
312 cities
11-13 октября 2019
МГУ | Экспоцентр | 90+ площадок
14–16 октября 2016
Центральная региональная площадка
28–30 октября 2016
ИРНИТУ, Сибэскпоцентр
14–15 октября 2016
Центральная региональная площадка
23 сентября - 8 октября 2017
«ДонЭкспоцентр», ДГТУ
ноябрь-декабрь 2018
МВДЦ «Сибирь»,
Вузы и научные площадки города
6-8 октября 2017
Самарский университет
27-29 октября
Кампус ДВФУ, ВГУЭС
30 сентября - 1 октября
Ледовый каток «Родные города»
21-22 сентября 2018 года
ВКК "Белэкспоцентр"
9-10 ноября 2018 года
Мурманский областной Дворец Культуры
21-22 сентября 2019 года
22-23 октября 2019 года
29-30 ноября 2019 года
7-8 сентября 2019 года
27-29 сентября 2019 года
4-5 октября 2019 года
10-12 октября 2019 года

Запатентован новый тип электрохимической ячейки

Сотрудники химического факультета и факультета наук о материалах МГУ имени М.В.Ломоносова запатентовали электрохимическую ячейку, позволяющую с помощью высокочувствительных методов анализа поверхности изучать химические процессы в материалах аккумуляторов. Разработка позволит понять процессы, возникающие при использовании литий-воздушных аккумуляторов. Этот тип аккумуляторов при одинаковой массе обладает в 5 раз большей ёмкостью, чем широко распространённые литий-ионные.  

Чтобы повысить эффективность работы аккумуляторов, ученые во всем мире предлагают использовать новые химические реакции, которые, протекая при зарядке и разрядке батареи, позволяют получить более высокий удельный энергозапас. Одной из наиболее перспективных альтернатив самым распространенным сейчас литий-ионным аккумуляторам считаются литий-воздушные элементы.

Литий-воздушные аккумуляторы вырабатывают электроэнергию буквально из воздуха: принцип их работы основан на окислении лития кислородом воздуха до пероксида лития Li2O2. Они легкие и могут обеспечить примерно в 5 раз большую удельную энергию, чем литий-ионные аккумуляторы. Но, несмотря на преимущества, промышленное производство литий-воздушных аккумуляторов пока не запущено: разработчики сталкиваются с фундаментальными и технологическими сложностями. Одним из существенных недостатков инновационных аккумуляторов стала быстрая деградация положительного электрода батареи, который, как правило, сделан из углерода. Уже после десятка циклов зарядки-разрядки аккумулятор перестает работать.

Чтобы определить insitu (т.е. непосредственно во время работы) процессы, которые приводят к необратимым изменениям в электролите и электродах, специалисты создают модельные электрохимические ячейки. С помощью своей разработки научная группа химиков из МГУ под руководством доктора химических наук, профессора Лады Яшиной выяснили, что к разрушению положительного электрода в литий-воздушных батареях приводит реакция углерода с очень активным и при этом короткоживущим супероксидом лития LiO2, а не пероксидом Li2O2, как считалось ранее. Супероксид в ячейке «живет» всего несколько секунд, однако за это время успевает окислить поверхность углеродного электрода.

Ключевым аналитическим методом, прояснившим причину деградации электрода, стала рентгеновская фотоэлектронная спектроскопия. Метод позволяет детально исследовать процессы на поверхности, при этом глубина зондирования может достигать всего одного атомного слоя. Однако в обычных электрохимических ячейках электроды или слой электролита оказываются слишком толстыми и поглощают фотоэлектроны, тем самым мешая «увидеть», что происходит на поверхности раздела электрод-электролит. Сотрудники МГУ решили эту проблему, нанеся на твердый электролит одноатомный графеновый слой, который прозрачен для фотоэлектронов.

«В использовании графена сегодня нет ничего необычного, во многих лабораториях по всему миру научились выращивать графен и переносить его на нужную подложку, — пояснил один из авторов патента старший научный сотрудник кафедры неорганической химии Даниил Иткис. — Обычно графен выращивают на поликристаллической медной фольге. Мы научились переносить графен на самые разные подложки, в том числе на твёрдый литий-проводящий электролит, о котором идет речь в патенте».

Разработанная ячейка позволяет исследовать процессы не только в литиевых батареях, но и в источниках тока с другими носителями заряда. Например, благодаря использованию графена, действующего в ячейке в качестве рабочего электрода, можно определить, при каких потенциалах электролиты различных источников тока перестают быть устойчивыми, и какие процессы сопровождают деградацию электролитов. Поэтому разработка поможет понять, как улучшить аккумуляторы самого разного типа.

Добавьте свой комментарий

Plain text

  • Переносы строк и абзацы формируются автоматически
  • Разрешённые HTML-теги: <p> <br>
LiveJournal
Регистрация

Новости в фейсбук

Случайные статьи

Ученые отобрали пробы воды из озер на месте воронок газового выброса на Ямале

В музее-заповеднике Менделеева прошел показ дизайнерской коллекции одежды Игоря Чепурина

В музее-заповеднике Менделеева прошел показ дизайнерской коллекции одежды Игоря Чепурина

 

 

Исследования российских ученых о ранних стадиях эмбриогенеза

Ученые биологического факультета МГУ имени М.В.Ломоносова впервые построили подробные карты пространственной организации генома в индивидуальных клетках и изучили особе

В клетке. Первая брешь

ПЕРВАЯ БРЕШЬ

В Институте химии силикатов РАН испытывают «магическую» технологию