FestivalNauki.ru
En Ru
cентябрь-ноябрь 2019
176 городов
September – November 2019
312 cities
11-13 октября 2019
МГУ | Экспоцентр | 90+ площадок
14–16 октября 2016
Центральная региональная площадка
28–30 октября 2016
ИРНИТУ, Сибэскпоцентр
14–15 октября 2016
Центральная региональная площадка
23 сентября - 8 октября 2017
«ДонЭкспоцентр», ДГТУ
ноябрь-декабрь 2018
МВДЦ «Сибирь»,
Вузы и научные площадки города
6-8 октября 2017
Самарский университет
27-29 октября
Кампус ДВФУ, ВГУЭС
30 сентября - 1 октября
Ледовый каток «Родные города»
21-22 сентября 2018 года
ВКК "Белэкспоцентр"
9-10 ноября 2018 года
Мурманский областной Дворец Культуры
21-22 сентября 2019 года
22-23 октября 2019 года
29-30 ноября 2019 года
7-8 сентября 2019 года
27-29 сентября 2019 года
4-5 октября 2019 года
10-12 октября 2019 года

Математический парк

Музеи мира: Математический парк

 

© Сайт проекта «Математический парк» http://mathpark.ru/

1) Теорема Пифагора 

Из разряда «стыдно не знать»: квадрат гипотенузы равен сумме квадратов катетов. Визуальное представление: три квадрата , построенные на сторонах треугольника. Площадь большого равна сумме площадей малых. 

 

© Сайт проекта «Математический парк» http://mathpark.ru/

2) Лист (лента) Мёбиуса - трёхмерный объект, у которого только одна граница и одна сторона. Обладает свойством неориентируемости. То есть, если вы, предположим, сделаете огромную ленту и решите прогуляться вдоль неё, то, шагая по поверхности, пройдёте вглубь и окажетесь как бы «с другой стороны». Сделав ещё один круг, вернётесь в начальную точку. 

 

© Сайт проекта «Математический парк» http://mathpark.ru/

3) Невозможный треугольник - ещё одна фигура, над которой можно «поломать» голову. По отдельности все его углы существуют в привычном нам виде, но, соединяясь, образуют парадокс, потому что стороны треугольника направленны одновременно и к зрителю, и от него. Это явление основано на способности человека из-за бессознательных ассоциаций обманывать самого себя. Мозг делает ряд допущений, чтобы объект хоть и с натяжечкой, но выглядел как реальный: 

а) прямые двумерные линии превращает в прямые трёхмерные линии; 

б) острые и тупые углы на плоскости - в прямые углы, искаженные в перспективе; 

в) внешние линии - в границы формы. 

Человеческое сознание сначала создаёт объект целиком, а потом уже рассматривает отдельные части.

 

© Сайт проекта «Математический парк» http://mathpark.ru/

4) Кёнигсбергские мосты - задача, которую вы можете решить прямо на месте. Условия: бывший Кенигсберг (ныне Калининград) расположен на реке Прегель, которая омывает в пределах города два острова. С берегов на острова были перекинуты мосты. Можно ли пройти по всем из них и вернуться в начальный пункт, не пересекая ни один мост дважды? Не будем спойлерить решение. Скажем только, что эту задачу решил в 1736 г. Леонард Эйлер, разработав на ее основе теорию графов, которую и сейчас используют в транспортной и коммуникационной системах. В 1905 г. появился Имперский мост. Согласно легенде, по приказу самого кайзера: тот не смог найти ответ, был осмеян придворными учеными, разгневан и потому совершенно серьезно настроен на строительство восьмого моста - благодаря ему задача становилась легко разрешимой. 

 

© Сайт проекта «Математический парк» http://mathpark.ru/

5) Многогранник Силаши

Вопрос: существует ли многогранник, отличный от тетраэдра, у которого любые две грани имеют общее ребро? Ответ перед вами. Полиэдр Силаши (Назван по имени венгерского математика Лайоша Силаши). У него 7 граней, каждая - шестиугольник. Правда, в отличии от тетраэдра, он невыпуклый, но кого волнуют такие мелочи? Гораздо интереснее, а можно ли построить многогранник, у которого больше 7 граней и они тоже все попарно пересекаются? А вот этот вопрос пока что открыт. 

 

© Сайт проекта «Математический парк» http://mathpark.ru/

6) Стена геометрии - огромный задачник на плоскости. С каждой картинкой связано математическое утверждение, которое предлагается угадать по рисунку и доказать. Поработать над логическими выкладками можно тут же, в беседке триангуляции - навеса, собранного из треугольников. Такая система применяется в геодезии, компьютерной графике, астрономии, социологии и других науках. 

 

© Сайт проекта «Математический парк» http://mathpark.ru/

7) Однополосный гиперболоид вращения - вид поверхности второго порядка (то есть задается уравнением в трехмерном пространстве). Через каждую его точку проходит по две прямые, которые полностью принадлежат поверхности. Кстати, получить его можно путём вращение гиперболы вокруг оси гиперболоида. Его оптическое свойство (отражает лучи, направленные в один из фокусов, в другой) используется в телескопах и антеннах Кассегрена (французский оптик). 

 

© Сайт проекта «Математический парк» http://mathpark.ru/

8) Додекаэдр - правильный многогранник, который составлен из 12 правильных пятиугольников. Из-за свойств симметрии ему нашли применение как в совершенно бытовых сферах (например, используются как генератор случайных числе), так и в научных гипотезах. В 2003 году, после анализа данных с космического аппарата WMAP, исследователи предположили, что Вселенная представляет собой додекаэдрическое пространство Пуанкаре. А Платон о додекаэдре писал: «…его бог определил для Вселенной и прибегнул к нему в качестве образца»

 

© Сайт проекта «Математический парк» http://mathpark.ru/

9) Скатерть простых чисел. 

Простые числа - это натуральные числа, которые делятся только на единицу и само себя. И хотя, казалось бы, что в них знаменательного, но для математики они имеют фундаментальное значение. Так любое число можно разложить на произведение простых множителей. Эта одна из самых сложных счетных задач, которая сейчас применяется в криптографии (для кодирования ключей с помощью очень больших чисел). 

 

© Сайт проекта «Математический парк» http://mathpark.ru/

Добавьте свой комментарий

Plain text

  • Переносы строк и абзацы формируются автоматически
  • Разрешённые HTML-теги: <p> <br>
LiveJournal
Регистрация

Новости в фейсбук

Случайные статьи

...И быстрых разумом бозонов в коллайдере большом рождать

Всего без одной частицы большинство попыток создать гармоничную модель Вселенной и вещества в ней идут прахом. И вот в ЦЕРНе сообщили, что нечто сходное с этой фундаментальной частицей найдено в экспериментах на Большом адронном коллайдере.

Биолог МГУ исследовал малоизученные виды жуков-щелкунов семейства Elateridae

Сотрудник биологического факультета МГУ имени М.В.Ломоносова рассмотрел малоизученные виды семейства Elateridae и описал новый вид жуков-щелкунов из этой группы.

Ученые обучили нейросеть определять пол человека по написанному тексту

Суперкузнечик из нержавейки

Банки, часы... и мосты

Швейцария известна своими надежными банками и наверное не менее надежными часами. Но строят там тоже неплохо. Вспомнить хотя бы знаменитый Чертов мост... Ведь три столетия простоял прежде чем рухнул.