FestivalNauki.ru
En Ru
cентябрь-ноябрь 2020
176 городов
September – November 2020
312 cities
09-11 октября 2020
МГУ | Экспоцентр | 90+ площадок
14–16 октября 2016
Центральная региональная площадка
28–30 октября 2016
ИРНИТУ, Сибэскпоцентр
14–15 октября 2016
Центральная региональная площадка
23 сентября - 8 октября 2017
«ДонЭкспоцентр», ДГТУ
ноябрь-декабрь 2018
МВДЦ «Сибирь»,
Вузы и научные площадки города
6-8 октября 2017
Самарский университет
27-29 октября
Кампус ДВФУ, ВГУЭС
30 сентября - 1 октября
Ледовый каток «Родные города»
21-22 сентября 2018 года
ВКК "Белэкспоцентр"
9-10 ноября 2018 года
Мурманский областной Дворец Культуры
21-22 сентября 2019 года
22-23 октября 2019 года
29-30 ноября 2019 года
7-8 сентября 2019 года
27-29 сентября 2019 года
4-5 октября 2019 года
10-12 октября 2019 года

Астрономы впервые зафиксировали излучение сверхвысоких энергий от гамма-всплесков

Астрономам впервые удалось поймать от гамма-всплесков фотоны, энергия которых относится к диапазону сверхвысоких энергий — от сотни гигаэлектронвольт до сотни тераэлектронвольт. Измеренная энергия частиц света не рекордна для астрономических источников, но подтверждает правильность одной из моделей генерации излучения в гамма-всплесках. Результаты опубликованы в серии статей в Nature (123).

Гамма-всплески — это самые мощные вспышечные события во Вселенной. В течение одной секунды такого процесса может выделиться столько же энергии, сколько излучит Солнце за всю свою жизнь. Гамма-всплески получили название благодаря высокой яркости в наиболее жестком диапазоне электромагнитных волн, гамма-излучении, но они наблюдаются и на многих других длинах волн.

Основной проблемой исследования гамма-всплесков является кратковременность их яркой фазы, из-за чего данные собираются в первую очередь в самом гамма-диапазоне, в котором приборы обладают невысоким угловым и энергетическим разрешением. В связи с этим долгое время не удается окончательно подтвердить давно предложенную теорию их образования. Согласно ей, это излучение образуется при слиянии нейтронных звезд или коллапсе ядра обычной крупной звезды, в результате чего возникает узкий джет, в котором вещество движется с околосветовой скоростью.

Излучение гамма-всплесков обычно можно разделить на две части: более яркую короткую, длительностью в десятки секунд, и намного более продолжительное послесвечение, возникающее, как считается, при взаимодействии выброшенного на первых стадиях вещества с окружающей средой. Обычно большая часть энергии приходится на фотоны гамма-диапазона с энергией от килоэлектронвольт до сотен мегаэлектронвольт. Также в нескольких случаях космические телескопы наблюдали фотоны с энергией в десятки гигаэлектронвольт, но механизм их излучения оставался невыясненным.

В серии новых работ говорится о наблюдениях двух гамма-всплесков GRB 190114C и GRB 180720B, от которых удалось зарегистрировать рекордные для данных источников фотоны с энергиями около тераэлектронвольта. Особенностью проведенных наблюдений также является то, что частицы экстремальной энергии были пойманы в фазе послесвечения, а не во время более яркой первой, что лучше объясняется конкретной теоретической моделью.

Всплеск GRB 190114C наблюдался на черенковском телескопе MAGIC и других наземных обсерваториях. Самые высокоэнергетические частицы начали приходить спустя минуту после начала вспышки и продолжали появляться в течение 20 минут, причем их поток быстро уменьшался. GRB 180720B был замечен другим черенковским телескопом HESS. Хотя в этом случае максимальные энергии составляли всего около сотни гигаэлектронвольт, но соответствующие фотоны наблюдались спустя 10 часов после начала события, что само по себе исключительное и важное обстоятельство.

Обработка всех полученных данных позволила выяснить, что энергетический спектр излучения на стадии послесвечения обладает двумя максимумами со сравнимым пиковым потоком. Предсказание о такой форме спектра было сделано ранее в модели обратного комптоновского рассеяния синхротронных фотонов на высокоэнергетических электронах, излучивших эти частицы ранее.

До данных наблюдений этот механизм был подтвержден в случае джетов блазаров и ожидался для гамма-всплесков, но убедительных доказательств не было. При этом альтернативные предположения, такие как синхротронное излучение электронов или протонов экстремально высоких энергий, намного хуже объясняет полученные результаты.

Ранее астрономам удалось впервые определить источник фотонов с энергией выше 100 тераэлектронвольт, объяснить особенности кривых блеска гамма-всплесков сверхсветовым движением, а также впервые измерить поляризацию радиоизлучения такой вспышки.

Источник: https://nplus1.ru/news/2019/11/20/very-high-energy-grb.

Добавьте свой комментарий

Plain text

  • Переносы строк и абзацы формируются автоматически
  • Разрешённые HTML-теги: <p> <br>
LiveJournal
Регистрация

Другие статьи в этой рубрике

Графен в медицине

Ксения Рыкова для ПостНауки

Астрономы поймали длинный гамма-всплеск от взрыва далекой сверхновой

Астрономы смогли достоверно обнаружить новую пару сверхновая—гамма-всплеск в далекой галактике. Подобные открытия позволяют понять связь между этими катаклизмами и более детально разобраться в механизмах генерации гамма-всплесков.

Взрыв сверхновой разложили на этапы

Сверхновые звёзды — основной источник элементов жизни во Вселенной. Существование человечества и всего живого стало возможно благодаря тем химическим элементам, которые были получены в результате взрыва сверхновых звёзд.

Новости в фейсбук

Случайные статьи

Физики МГУ: «квантовый вампир» не боится теплового света

Лечить рак по-новому. Часть II

Продолжение рассказа о новинках против рака: как против болезни можно применять РНК и наночастицы. А в заключительной части речь пойдет об иммунотерапии.

Российские и американские ученые разработали алгоритм, который ускорит поиск новых антибиотиков

Ученые всего мира бьют тревогу: многие болезнетворные бактерии стали устойчивы к существующим антибиотикам, и, чтобы спастись от болезней, нужно создавать новые лекарства.

 

 

Магнитные жидкости

Берем магнит, черную жидкость, сближаем их… и получается симпатичный ежик. Речь идет об одном из первых, и весьма при этом любопытном достижении нанотехнологий – магнитной жидкости.

29 января в Париже состоится Церемония открытия Международного года Периодической таблицы химических элементов

29 января в Париже состоится Церемония открытия Международного года Периодической таблицы химических элементов