FestivalNauki.ru
En Ru
cентябрь-ноябрь 2020
176 городов
September – November 2020
312 cities
09-11 октября 2020
МГУ | Экспоцентр | 90+ площадок
14–16 октября 2016
Центральная региональная площадка
28–30 октября 2016
ИРНИТУ, Сибэскпоцентр
14–15 октября 2016
Центральная региональная площадка
23 сентября - 8 октября 2017
«ДонЭкспоцентр», ДГТУ
ноябрь-декабрь 2018
МВДЦ «Сибирь»,
Вузы и научные площадки города
6-8 октября 2017
Самарский университет
27-29 октября
Кампус ДВФУ, ВГУЭС
30 сентября - 1 октября
Ледовый каток «Родные города»
21-22 сентября 2018 года
ВКК "Белэкспоцентр"
9-10 ноября 2018 года
Мурманский областной Дворец Культуры
21-22 сентября 2019 года
22-23 октября 2019 года
29-30 ноября 2019 года
7-8 сентября 2019 года
27-29 сентября 2019 года
4-5 октября 2019 года
10-12 октября 2019 года

Пульсары предложили использовать как детекторы гравитационных волн

Астрономы пришли к выводу, что пульсары можно использовать для регистрации гравитационных волн, так как такое возмущение должно привести к временному изменению скорости вращения тела. Более того, зная относительные положения источника волны и пульсара можно получить информацию об уже зарегистрированных на Земле в прошлом волнах, пишут авторы в препринте на arXiv.org.

Пульсары — это вращающиеся нейтронные звезды, причем их ориентация такова, что исходящие с их магнитных полюсов узкие конусы излучения попадают на Землю, но из-за вращения источника наблюдаются в виде строго периодических всплесков. По массе нейтронные звезды примерно соответствуют Солнцу, но их размер составляет всего около 10 километров, из-за чего их вращение оказывается очень стабильным. Иными словами, пульсары можно использовать в качестве своеобразных «часов», стабильный ход которых меняется лишь под воздействием конкретных факторов.

Пульсары различаются по степени стабильности периода: как правило, современные атомные часы точнее пульсаров, но некоторые миллисекундные пульсары, такие как J0437-4715, обладают точностью 10−17 секунд, что находится на уровне наилучших современных атомных часов. На более высоких частотах период пульсаров испытывает хаотические колебания.

Известно, что период пульсаров может меняться. В частности, наблюдаются глитчи — резкие ускорения вращения примерно на миллионную долю. После такого скачка период постепенно возвращается к исходному или близкому к нему значению на масштабе от нескольких дней до нескольких лет. Считается, что глитчи связаны с внутренними процессами нейтронной звезды, такими как растрескивание коры, а не с внешними силами.

Индийские астрофизики под руководством Аджита Шриваставы (Ajit Srivastava) из Института физики в Бхубанешваре предложили рассмотреть в качестве подобного внешнего воздействия гравитационные волны — колебания метрики пространства-времени, рождаемые при слиянии массивных тел, таких как черные дыры и нейтронные звезды. Авторы пришли к выводу, что эти возмущения могут оказывать заметное влияние на скорость вращения пульсаров.

Предложенный механизм воздействия связывает прохождение гравитационной волны с деформацией тела и соответствующим изменением его момента инерции — меры инертности при вращательном движении, аналогичной массе при поступательном. В результате скорость вращения должна измениться примерно на 10−16 долю — это на уровне предельной точности современных телескопов.

Дополнительными благоприятными обстоятельствами может оказаться относительная близость пульсара к источнику волны (тогда возмущение метрики около него будет гораздо сильнее, чем у Земли), а также возможное совпадение ее частоты с резонансом внутренних колебаний нейтронной звезды. Ученые пишут, что в таком случае можно ожидать одновременно как усиления эффекта на порядки, так и увеличения продолжительности. Так, гравитационный всплеск длительностью всего несколько миллисекунд может привести к изменению частоты вращения пульсара на десять минут — такой эффект будет легче зарегистрировать.

Также благодаря пульсарам могут оказаться возможным изучение уже прошедших сквозь Землю гравитационных волн. Авторы приводят список потенциальных близких источников гравитационных волн — сверхновых — и пульсаров, на которых в течение ближайших 50 лет должно сказаться это воздействие. Например, волна от сверхновой SN1987A должна повлиять на пульсары J0709-5923 и B0559-57, соответствующие изменения будут наблюдаться на Земле в 2023 и 2024 годах.

Ранее ученые нашли самую массивную нейтронную звезду, впервые зафиксировали слияние нейтронной звезды и черной дыры, а также доказали причастность слияний нейтронных звезд к коротким гамма-всплескам.

Тимур Кешелава

Источник: N+1

Добавьте свой комментарий

Plain text

  • Переносы строк и абзацы формируются автоматически
  • Разрешённые HTML-теги: <p> <br>
LiveJournal
Регистрация

Другие статьи в этой рубрике

Графен в медицине

Ксения Рыкова для ПостНауки

Астрономы поймали длинный гамма-всплеск от взрыва далекой сверхновой

Астрономы смогли достоверно обнаружить новую пару сверхновая—гамма-всплеск в далекой галактике. Подобные открытия позволяют понять связь между этими катаклизмами и более детально разобраться в механизмах генерации гамма-всплесков.

Взрыв сверхновой разложили на этапы

Сверхновые звёзды — основной источник элементов жизни во Вселенной. Существование человечества и всего живого стало возможно благодаря тем химическим элементам, которые были получены в результате взрыва сверхновых звёзд.

Новости в фейсбук

Случайные статьи

Банки, часы... и мосты

Швейцария известна своими надежными банками и наверное не менее надежными часами. Но строят там тоже неплохо. Вспомнить хотя бы знаменитый Чертов мост... Ведь три столетия простоял прежде чем рухнул.

Опубликованы результаты классификации китайского коронавируса

Материалы, которые навсегда изменили историю человечества

Место находки: Сентгабель, Верхняя Гаронна, Франция. // commons.wikimedia.org
 

Распределение материи и гамма-лучей указало на аннигиляцию темной материи

S. Ammazzalorso et al. / Physical Review Letters, 2020

Схема будущего