FestivalNauki.ru
En Ru
cентябрь-ноябрь 2020
176 городов
September – November 2020
312 cities
09-11 октября 2020
МГУ | Экспоцентр | 90+ площадок
14–16 октября 2016
Центральная региональная площадка
28–30 октября 2016
ИРНИТУ, Сибэскпоцентр
14–15 октября 2016
Центральная региональная площадка
23 сентября - 8 октября 2017
«ДонЭкспоцентр», ДГТУ
ноябрь-декабрь 2018
МВДЦ «Сибирь»,
Вузы и научные площадки города
6-8 октября 2017
Самарский университет
27-29 октября
Кампус ДВФУ, ВГУЭС
30 сентября - 1 октября
Ледовый каток «Родные города»
21-22 сентября 2018 года
ВКК "Белэкспоцентр"
9-10 ноября 2018 года
Мурманский областной Дворец Культуры
21-22 сентября 2019 года
22-23 октября 2019 года
29-30 ноября 2019 года
7-8 сентября 2019 года
27-29 сентября 2019 года
4-5 октября 2019 года
10-12 октября 2019 года

Водная суспензия графена упростила нанесение электродов суперконденсатора

Вольтамперные характеристики суперконденсаторов с новыми электродами при разных температурах отжига
Vasil Skrypnychuk / The Journal of Physical Chemistry Letters, 2020

Физики сделали водную суспензию из гидрофобного активированного восстановленного оксида графена с добавками для простой и безопасной технологии производства суперконденсаторов. Для этого они добавили в воду коллоидальный оксид кремния, оксид графена и углеродные нанотрубки. Емкость гибких конденсаторов, полученных из водной суспензии, составила 180 фарад на грамм. Статья опубликована в The Journal of Physical Chemistry Letters.

Суперконденсаторы или ионисторы — устройства для запасания энергии с высокой емкостью, в котором классическими обкладками служит двойной электрический слой между электродом и электролитом. Их начинают применять во многих областях техники, в которых требуется накопление и высвобождение большого количества электроэнергии за короткое время, например, в дефибрилляторах или вспышках камер. 

Графен обладает высокой проводимостью и высокой площадью поверхности 2630 квадратных метров на грамм и считается перспективным материалом для использования в суперконденсаторах. Ученые пытаются бороться с уменьшением площади поверхности во время производства суперконденсатора, но нанесение электрода очень зависит от того, как пересобираются отдельные листы графена из прекурсора в итоговую пористую структуру. Использование активированного восстановленного оксида графена, имеющего жесткую трехмерную структуру, отчасти решает эту проблему. Инженеры пытались улучшить качество электродов, варьируя соотношение исходных компонентов и распределение пор по размерам. Впрочем, все эти работы предполагают сложную многостадийную обработку с использованием токсичных растворителей, что затрудняет масштабирование процессов для промышленного производства.

Василий Скрипничук (Vasyl Skrypnychuk) со своими коллегами из Университета Умеа нашел простой способ получения водной суспензии активированного восстановленного оксида графена разной концентрации и измерил электрические характеристики электродов суперконденсатора из этого материала. Полученная суспензия годится для большинства промышленных методов изготовления электродов — напыление, нанесение кисточкой и лезвием. Гибкие электроды, полученные простым высушиванием суспензии, имеют высокую площадь поверхности (больше 1800 квадратных метров на грамм) и хорошую электропроводность в 800 сименс на метр.

Для того, чтобы суспензировать гидрофобные графеновые материалы, физики попробовали в качестве присадок распространенные модификаторы вязкости — коллоидальный оксид кремнияи карбоксиметилированную целлюлозу, при добавлении которых получалась гелеобразная суспензия с недостаточной адгезией к подложке. Для более прочного контакта жидкости с поверхностью они добавили углеродные нанотрубки из-за их высокой электропроводности, так как полимеры — распространенные адгезионные агенты — в большинстве своем являются диэлектриками и не годятся для применения в электродах. Чтобы повысить контакт между гидрофобными и гидрофильными фазами суспензии, ученые внесли в нее оксид графена, у которого есть участки обоих типов. 

 

Внешний вид густой суспензии

Vasil Skrypnychuk / The Journal of Physical Chemistry Letters, 2020

Электронная микрофотография электрода: углеродные нанотрубки связывают частицы наполнителя

Vasil Skrypnychuk / The Journal of Physical Chemistry Letters, 2020

 
 

 

Процесс суспензирования, предложенный физиками, включает в себя три стадии: в воду добавляют углеродные нанотрубки и оксид графена при интенсивном перемешивании в шаровой мельнице, в эту смесь вносят коллоидальный оксид кремния для настройки вязкости и стабилизации взвеси, а затем к полученной суспензии добавляют восстановленный оксид графена или измельченный активированный восстановленный оксид графена, после чего необходимо интенсивно перемешать смесь. Наилучшие характеристики для получения электрода суперконденсатора из суспензии получились при отношении активированного восстановленного оксида графена к каждой из присадок десять к одному. Полученные суспензии оставались стабильными в течение нескольких дней — заметного осадка после десяти дней не наблюдалось. 

Для демонстрации описанной технологии физики нанесли водную суспензию на гибкий лист нержавеющей стали и высушили ее под вакуумным насосом. Таким образом они получили слой электрода толщиной в 100-500 микрометров. На фотографии со сканирующего электронного микроскопа ученые заметили микрометровые частицы активированного графена, связанные между собой углеродными нанотрубками. Соскоблив слой электрода со стальной подложки, они измерили площадь поверхности и распределение пор — по методу БЭТ удельная площадь электрода составила 1720 квадратных метров на грамм. Примечательно, что распределение размера пор в электроде и в порошке прекурсора восстановленного оксида графена очень похожи. Исходя из этого физики пришли к выводу, что в процессе обработки и нанесения активированного восстановленного оксида графена структура не претерпевает заметных изменений.

Для того, чтобы повысить электропроводность электрода, ученые после нанесения слоя отожгли его при 200 градусах Цельсия и показали, что количество стадий можно снизить, если наносить суспензию сразу на горячую подложку. Это воздействие приводит к восстановлению оксида графена, и появившиеся его вкрапления увеличивают электрический контакт между частицами активированного графена. Ученые оценили характеристики суперконденсатора в устройстве из двух таких электродов в щелочном и органическом — ацетонитрильный раствор тетрафторобората тетреэтиленамина — электролитах. Практически линейные кривые зарядки-разрядки подтверждают, что такие электроды работают за счет двойного электрического слоя. Наилучший образец суперконденсатора с активированным восстановленным оксидом графена показал высокую емкость: 180 фарад на грамм в щелочном электролите и 140 фарад на грамм в органическом. Эти данные хорошо согласуются с данными из предыдущей работы, в которой емкость конденсатора составила 167 фарад на грамм в том же органическом электролите. 

 

График Рагоне, позвоялющей сравнивать разные энергозапасающие системы

 

Суперконденсаторы лежат в области правее литий-ионных конденсаторов

Vasil Skrypnychuk / The Journal of Physical Chemistry Letters, 2020

 

 

Совсем недавно физики создали гибкий суперконденсатор на основе углеродных нанотрубок, который может растягиваться в восемь раз без потери работоспособности. А про работу суперконденсатора подробнее можно прочитать в материале «Легкий старт».

Артем Моськин

Источник: N+1

Добавьте свой комментарий

Plain text

  • Переносы строк и абзацы формируются автоматически
  • Разрешённые HTML-теги: <p> <br>
LiveJournal
Регистрация

Новости в фейсбук

Случайные статьи

Алексей Акимов: «Через 100 лет в каждом компьютере будет квантовый чип»

Ксения Рыкова для ПостНауки

Как не попасть в ловушки? Прогнозировать развитие страны поможет экономическая томография

Обнаружен новый тип полуметаллов

Что изобрел Кулибин?

Все знают, что Кулибин — это великий русский изобретатель, механик, инженер. Его фамилия давно стала в русском языке именем нарицательным. Но не все могут назвать хотя бы одно его изобретение. Что же изобрел Иван Петрович Кулибин?

Ученые обнаружили, что минералы степановит и жемчужниковит имеют уникальную структуру