FestivalNauki.ru
En Ru
cентябрь-ноябрь 2020
176 городов
September – November 2020
312 cities
09-11 октября 2020
МГУ | Экспоцентр | 90+ площадок
14–16 октября 2016
Центральная региональная площадка
28–30 октября 2016
ИРНИТУ, Сибэскпоцентр
14–15 октября 2016
Центральная региональная площадка
23 сентября - 8 октября 2017
«ДонЭкспоцентр», ДГТУ
ноябрь-декабрь 2018
МВДЦ «Сибирь»,
Вузы и научные площадки города
6-8 октября 2017
Самарский университет
27-29 октября
Кампус ДВФУ, ВГУЭС
30 сентября - 1 октября
Ледовый каток «Родные города»
21-22 сентября 2018 года
ВКК "Белэкспоцентр"
9-10 ноября 2018 года
Мурманский областной Дворец Культуры
21-22 сентября 2019 года
22-23 октября 2019 года
29-30 ноября 2019 года
7-8 сентября 2019 года
27-29 сентября 2019 года
4-5 октября 2019 года
10-12 октября 2019 года

Поведение слизевика оказалось неплохим методом выявления космической паутины

Burchett et al. / The Astrophysical Journal Letters, 2020

Астрономы представили новый алгоритм поиска нитей космической паутины, который основан на поведении слизевика. Оказалось, что используемый живым организмом способ нахождения еды можно адаптировать для космологической задачи. В результате удается обойти основные ограничения альтернативных вычислительных методов, пишут авторы в журнале The Astrophysical Journal Letters.

Согласно современным представлениям, крупномасштабная структура Вселенной похожа на трехмерную сеть или пену. В ней крупные объемы с пониженной плотностью вещества (войды) граничат с нитчатыми структурами (филаментами), вдоль которых расположена основная доля вещества. Типичный размер таких структур составляет порядка нескольких мегапарсек.

Наилучшим образом такое распределение прослеживается в крупных обзорах галактик. Однако на больших расстояниях в них попадают только самые яркие объекты и их скопления, которые, как правило, находятся на месте пересечения филаментов. Вместе с тем считается, что существенная доля обычного вещества находится вдоль филаментов в виде разреженного газа, в котором нет звезд или других светящихся источников.

Эта ситуация получила название проблемы недостающих барионов, так как получающаяся из теоретических соображений и анализа реликтового излучения оценка общей плотности барионов оказывается заметно выше, чем может содержаться в галактиках и других попадающих в обзоры объектах. И хотя существуют отдельные работы, в которых приводятся свидетельства в пользу обнаружения газа между скоплениями галактик, полноценного решения этой проблемы пока нет.

Астрономы из США и Чили при участии Джозефа Бурчетта (Joseph Burchett) из Калифорнийского университета в Санта-Крузе создали и опробовали новый численный алгоритм поиска разреженного газа в данных обзоров, который вдохновлен поведением слизевика Physarum polycephalum. По утверждению авторов, новый подход способен обойти два основных ограничения альтернативных методов: необходимость определения плотности вещества на расстоянии до нескольких мегапарсек от галактик, а также работа на большом диапазоне масштабов от небольших групп галактик до размеров войдов.

Physarum polycephalum обладает сложным жизненным циклом и в целом может быть отнесен к бесклеточным организмам. На одной из стадий он образует одну макроскопическую клетку с множеством ядер — плазмодий. В такой форме слизевик обладает ярко-желтым цветом и может ползать со скоростью до нескольких сантиметров в час, а также выпускать длинные отростки, которые формируют сеть для поиска еды. Когда пища найдена, то лишние ответвления втягиваются, а соединяющее текущее положение основной части с едой утолщается. Фактически, организм таким образом решает задачу о нахождении кратчайшего пути между двумя точками, причем делает это весьма хорошо, обычно находя близкое к оптимальному решение.

 

Определенная «астрономическим слизевиком» плотность распределения газа. На врезах желтым показаны положения отдельных галактик, которые являются входными данными.

Burchett et al. / The Astrophysical Journal Letters, 2020

 

 

Авторы использовали разработанную в 2010 году цифровую модель поведения слизевика и адаптировали ее для работы с астрономическими данными. Исходная работа симулирует деятельность организма посредством введения множества отдельных самостоятельно движущихся единиц, которые независимо притягиваются к источникам химических сигналов, оставляя в каждый момент времени собственный химический след.

 

В новом исследовании ученые обобщили модель на трехмерный случай и ввели новое правило отбора траекторий: вместо однозначного движения вдоль максимального градиента концентрации, «астрономический слизевик» выбирает путь вероятностно, так что может выбрать и локально неоптимальный путь, хоть и будет это делать нечасто. Такая модификация позволила на выходе программы получить вероятность распределения филаментов, а не единственную конфигурацию с максимальным правдоподобием.

В качестве входных данных астрономы использовали выборку в 37662 галактики из обзора SDSS, расположенных в диапазоне красных смещений от 0,0138 до 0,0318. В данном случае галактики служат в качестве «еды» для «астрономического слизевика», причем их масса определяет ее количество. По мере работы программы слизевик распространяется по всему доступному объему, достигая положения равновесия, соответствующего близкой к оптимальной транспортной сети между галактиками. Плотность газа в филаментах в таком случае пропорциональна оставленному следу, источниками которого являются как сами галактики, так и отдельные модельные компоненты.

Для калибровки полученного распределения астрономы воспользовались данными о поглощении нейтральным водородом света квазаров, расположенных намного дальше изученной области Вселенной. На использованной площадке неба находится более пятисот квазаров, которые с высокой точностью наблюдал космический телескоп «Хаббл». В спектре излучения этих ярких источников наблюдается Lyα-лес, то есть множественные поглощения от расположенных на разных красных смещениях облаков нейтрального водорода, которые не видны иным образом.

Полученные слизевиком карты распределения оказались в согласии с имеющимися для отдельных точек данными по квазарам, кроме мест с наибольшей плотностью газа. Впрочем, авторы называют это ожидаемым, так как в этих областях условия среды приводят к ионизации водорода, который перестает поглощать в линии Lyα.

Недавно астрономы на конкретном примере напрямую увидели недостающую барионную материю Вселенной, заметили ее присутствие на большом красном смещении и определили форму Местного войда.

Тимур Кешелава

Источник: N+1

Добавьте свой комментарий

Plain text

  • Переносы строк и абзацы формируются автоматически
  • Разрешённые HTML-теги: <p> <br>
LiveJournal
Регистрация

Другие статьи в этой рубрике

Графен в медицине

Ксения Рыкова для ПостНауки

Астрономы поймали длинный гамма-всплеск от взрыва далекой сверхновой

Астрономы смогли достоверно обнаружить новую пару сверхновая—гамма-всплеск в далекой галактике. Подобные открытия позволяют понять связь между этими катаклизмами и более детально разобраться в механизмах генерации гамма-всплесков.

Взрыв сверхновой разложили на этапы

Сверхновые звёзды — основной источник элементов жизни во Вселенной. Существование человечества и всего живого стало возможно благодаря тем химическим элементам, которые были получены в результате взрыва сверхновых звёзд.

Новости в фейсбук

Случайные статьи

Татуировка здоровья

Если обратить на него пристальное внимание, то обычный термометр может рассказать нам много важных вещей о нашем здоровье. Для этого надо лишь измерить температуру тела с точностью до десятых долей градуса.

Мифы о "здоровом" образе жизни. Часть II.

Театр одного психолога

Как превратить приличного человека в палача? Почему, когда на нас смотрят, мы лучше крутим леску спиннинга, но хуже сочиняем стихи?

Ученые КФУ планируют повысить эффективность добычи нефти с помощью уравнений

Самые крупные плоды

Можно подумать, что самые большие в мире фрукты/овощи – это плоды каких-нибудь экзотических растений. Однако чемпионом здесь является тыква, хотя и не самая обыкновенная.