FestivalNauki.ru
En Ru
cентябрь-ноябрь 2020
176 городов
September – November 2020
312 cities
09-11 октября 2020
МГУ | Экспоцентр | 90+ площадок
14–16 октября 2016
Центральная региональная площадка
28–30 октября 2016
ИРНИТУ, Сибэскпоцентр
14–15 октября 2016
Центральная региональная площадка
23 сентября - 8 октября 2017
«ДонЭкспоцентр», ДГТУ
ноябрь-декабрь 2018
МВДЦ «Сибирь»,
Вузы и научные площадки города
6-8 октября 2017
Самарский университет
27-29 октября
Кампус ДВФУ, ВГУЭС
30 сентября - 1 октября
Ледовый каток «Родные города»
21-22 сентября 2018 года
ВКК "Белэкспоцентр"
9-10 ноября 2018 года
Мурманский областной Дворец Культуры
21-22 сентября 2019 года
22-23 октября 2019 года
29-30 ноября 2019 года
7-8 сентября 2019 года
27-29 сентября 2019 года
4-5 октября 2019 года
10-12 октября 2019 года

Ученые придумали новый способ расчета распространения радиоволн

Исследователи из Калининграда совместно с коллегами из Иркутска, Ростова-на-Дону и Исландии разработали новый способ нахождения наилучшей траектории для построения 3D-моделей распространения коротких волн. Метод уже применили к расчету траекторий ионосферных радиолучей — радиоволн в заряженном слое атмосферы Земли. Статья опубликована в IEEE Transactions on Antennas and Propagation.

«Разработанный метод и созданный комплекс программ могут стать эффективным инструментом в моделировании поиска радиоволн, направленных от излучателя к приемнику, с поверхности Земли, ракет или космических аппаратов. Метод возможно применять для оптических исследований, при решении задач радиосвязи и навигации спутниковых систем, а также для расчета сейсмических и океанических волн», – отмечает один из исследоваталелей, младший научный сотрудник Калининградского филиала Института земного магнетизма, ионосферы и распространения радиоволн имени Н. В. Пушкова РАН Игорь Носиков.

Ионосфера — часть атмосферы на высотах 50–300 километров, где много ионизированных частиц: электроны отрываются от молекул и атомов под действием ультрафиолета, рентгеновских лучей и прилетающих от Солнца протонов. На нее постоянно влияют радиация Солнца, возмущения магнитного поля Земли и атмосферные процессы, что приводит к изменениям в ионосфере и формированию разных по размеру неоднородностей. Наиболее ярко это может проявиться, например, во время северных сияний или потеплений стратосферы над Арктикой.

Для мониторинга ионосферы и связи на больших расстояниях используют высокочастотные радиоволны и компьютерные модели для их расчета. Именно их распространение в ионосфере становится определяющим фактором при выборе характеристик приемо-передающих устройств: радиочастот, параметров антенны и прочего. Проблема расчета радиолучей в аналитически заданной ионосфере — не настолько сложная вычислительная задача, однако на пути распространения радиоволны могут встретиться непредвиденные препятствия, например те же неоднородности. Таким образом, проблема отслеживания траекторий радиолучей возникает, когда необходимо найти соответствующие пути радиосвязи между передатчиком и приемником в трехмерно-неоднородной ионосфере.

«Фундаментальное значение разработки нашего метода мы связываем с теоретическими аспектами распространения электромагнитных волн в неоднородных средах. Большую роль он должен сыграть в интерпретации данных вертикального и наклонного зондирования ионосферы, — считает старший научный сотрудник КФ ИЗИМРАН Максим Клименко. — На данный момент одним из средств проверки разрабатываемых теорий и важнейшим прикладным инструментом является численное моделирование, то есть создание математической модели».

Поддержанные грантом Президентской программы исследовательских проектов Российского научного фонда исследователи поставили задачу совершенствовать и искать новые эффективные способы численного моделирования того, как распространяются радиоволны. Разработанный метод отличается от более ранних подходов строгой фиксацией положений передатчика и приемника, а также возможностью избирательно определять разные типы радиолучей.

Последнее позволило создать эффективный метод глобального нахождения траекторий лучей, где они идентифицируются один за другим. В качестве способа решения выступает алгоритм прямой оптимизации, и не требуется работа со сложными вариационными и бихарактеристическими уравнениями. Для различных типов лучей применяют разные способы вычислений, поэтому удается отделить их друг от друга. Это упрощает задачу поиска конкретной радиоволны среди множества остальных.

Источник: https://indicator.ru/engineering-science/uchenye-pridumali-novyi-sposob-rascheta-rasprostraneniya-radiovoln-14-02-2020.htm.

Добавьте свой комментарий

Plain text

  • Переносы строк и абзацы формируются автоматически
  • Разрешённые HTML-теги: <p> <br>
LiveJournal
Регистрация

Другие статьи в этой рубрике

Графен в медицине

Ксения Рыкова для ПостНауки

Астрономы поймали длинный гамма-всплеск от взрыва далекой сверхновой

Астрономы смогли достоверно обнаружить новую пару сверхновая—гамма-всплеск в далекой галактике. Подобные открытия позволяют понять связь между этими катаклизмами и более детально разобраться в механизмах генерации гамма-всплесков.

Взрыв сверхновой разложили на этапы

Сверхновые звёзды — основной источник элементов жизни во Вселенной. Существование человечества и всего живого стало возможно благодаря тем химическим элементам, которые были получены в результате взрыва сверхновых звёзд.

Новости в фейсбук

Случайные статьи

Физики МГУ: «квантовый вампир» не боится теплового света

Лечить рак по-новому. Часть II

Продолжение рассказа о новинках против рака: как против болезни можно применять РНК и наночастицы. А в заключительной части речь пойдет об иммунотерапии.

Российские и американские ученые разработали алгоритм, который ускорит поиск новых антибиотиков

Ученые всего мира бьют тревогу: многие болезнетворные бактерии стали устойчивы к существующим антибиотикам, и, чтобы спастись от болезней, нужно создавать новые лекарства.

 

 

Магнитные жидкости

Берем магнит, черную жидкость, сближаем их… и получается симпатичный ежик. Речь идет об одном из первых, и весьма при этом любопытном достижении нанотехнологий – магнитной жидкости.

29 января в Париже состоится Церемония открытия Международного года Периодической таблицы химических элементов

29 января в Париже состоится Церемония открытия Международного года Периодической таблицы химических элементов